澳门新萄京赌场网址-官方网站app

交通运输部全面推进节能减排环境保护试点示范项目建设,2019中国节能与低碳发展论坛

一月 23rd, 2020  |  澳门新萄京赌场网址

“万元GDP能耗从2015年的1.22吨标准煤下降到2018年的0.52吨标准煤,年均下降5.4%,成绩可喜可贺!”12月3日,由中国节能协会主办的“2019中国节能与低碳发展论坛”在京召开,第十届全国人大常委会副委员长顾秀莲在致辞中透露。  “但是,目前各行各业浪费现象非常严重。我们经常看到,自来水哗啦啦地流,酒店电视机开着不看,过度包装以及外卖带来的环境问题日益严峻。节能减排的任务还是很重。”顾秀莲强调,生态文明要从娃娃抓起。“要加强生态文明教育,让‘绿水青山就是金山银山’这一理念更加深入人心,让各行各业都参与节能减排。”  顾秀莲表示,人类是命运共同体,生态危机、环境危机已成为全球挑战。“政府要发挥引领作用,企业要发挥主力军作用,科研院所要发挥技术优势,与企业结合,将科研成果转化成生产力,协会要发挥桥梁纽带作用,强强联手,优势互补,团结起来,共同面对解决生态文明建设系统工程。”  此次论坛以“节能低碳?
提质增效”为主题,深入学习贯彻党的十九大报告精神,落实“十三五”规划《纲要》要求,牢固树立社会主义生态文明观和绿色发展新理念,推动工业、交通运输和建筑等领域绿色、循环、节能、低碳和谐与可持续发展。  论坛围绕生态文明建设、绿色制造、应对气候变化、大气污染治理、节能环保产业发展等热点内容进行了深入研讨,解读了绿色发展政策,分析了当前节能减排、应对气候变化新形势,提出了节能降碳新思路,为企业、政府搭建了交流平台,发挥了桥梁纽带作用。  今年10月召开的十九届四中全会提出,坚持和完善生态文明制度体系,促进人与自然和谐共生。“只要我们行动起来,有信心、有担当、有恒心、就能为促进生态文明建设做出贡献,也会有巨大的商机。”顾秀莲说,中国节能协会要积极发挥行业协会作用,配合国家推进绿色化、加快建设生态文明,节能工作大有可为。  国家发展改革委环资司宋长青副司长就《壮大节能环保产业,促进生态文明建设》发表主旨演讲,工业和信息化部节能司尤勇副司长就《推进绿色制造,促进高质量发展》发表主旨演讲,国管局公共机构节能司宋春阳副司长就《大力推进公共机构绿色发展》发表主旨演讲,中国工程院院士、中国节能协会江亿理事长就《对我国能源革命的思考》作了主题报告,国家发改委原气候司谢极巡视员就《应对气候变化目标与实践》作了主题报告,中国标准化研究院环资分院林翎院长介绍了《绿色制造标准体系建设》情况,中央财经大学绿色金融国际研究院王遥院长和大家分享了《绿色金融助力绿色制造》,清华大学能源环境经济研究所副教授佟庆介绍了《全国碳市场总量设定与配额分配总体方案》,北京市农业农村局李文超处长介绍了北京清洁取暖、减煤换煤情况,国家节能中心辛升副处长介绍了用能权有偿使用和交易制度进展情况,企业代表还分享了相关的节能减排示范案例。  论坛上还表彰了节能减排的先进企业,顾秀莲等为获得“2019年中国节能协会创新奖”一等奖的企业颁奖。中国节能协会创新奖组委会通过初评、复评、终审、公示等程序,最终评出36个奖项。

“十二五”期间,交通运输部全面推进节能减排环境保护试点示范项目建设,实施了63个交通运输环保试点建设项目,涵盖交通运输环境监测网络、重大交通基础设施生态建设和保护、高速公路服务区清洁能源与水循环利用等方面。确定了26个低碳交通运输体系建设试点城市,并组织开展了经验总结交流。先后组织开展了江苏、浙江、山东、辽宁4个绿色交通省,北京、厦门等27个绿色交通城市,大连港、青岛港等11个绿色港口,河南三淅高速公路、京港澳高速公路河北段等20条绿色公路,共计62个绿色交通试点项目,逐步形成了一套绿色低碳交通运输区域性和主题性试点管理模式。先后推出六批130个部级节能减排示范项目。这些试点示范项目的实施,对行业绿色发展起到了很好的引领带动和宣传作用,显著提高了行业节能环保意识,有力推进形成了行业绿色发展的新格局。中国交通新闻网编发部分试点示范项目的实施情况,敬请关注。节能减排河南三淅高速公路智能化节电
生态槽净水河南省三淅高速公路卢氏至寺湾段,针对工程地处中部山区、生态环境敏感、能源旅游通道等特点,开展节能环保技术探索与应用,为全国绿色公路建设积累了经验。该项目在建设过程中,通过设立专项资金激励机制,鼓励引导施工单位利用隧道弃砟及收集腐殖土造地。施工单位还利用造地、路基填筑、营造地形等方式对废弃材料进行二次利用。该项目还大力推广节能减排技术,使用耐久性路面,增加路面结构和沥青表面层使用寿命;设置地源热泵系统,全年可节能约40%;全线隧道节能灯具替代率达到47.7%,长大隧道通风采用混合型通风智能控制方式,节电率可达20%至30%;采用分布式节能供电,提高供配电系统的功率因数,节能效果显著。在环境保护方面,该项目利用路面径流生态种植槽净化技术、桥面径流三池联动净化应急技术等保护水文资源。在施工过程中用液化天然气取代重油、柴油等作为燃料,综合排放降低90%以上。同时,尽可能保护和利用原生植被,在有条件绿化的区域种植乔灌木,吸收固定二氧化碳。项目施工期替代燃料量33550吨标准油,节能量11854吨标准油,二氧化碳减排量121889吨;运营期每年节能量9012.24吨标准油,二氧化碳减排量9927.77吨。项目还通过了“重交通沥青路面结构耐久性设计与施工技术”、“三淅高速公路施工能耗统计分析研究”等10项科研攻关项目,形成了交通运输行业标准3项、专利4项,对生态敏感区、山岭重丘区绿色公路建设起到示范引领作用。京港澳高速公路河北段绿动建养全过程京港澳高速公路河北段实现了低能耗、低排放、低污染、高效率的目标,在交通运输部的考核验收中被评定为优秀示范项目。节能神器:地源热泵
橡胶改性沥青冬季从地源中吸取热量,向服务区建筑物供暖;夏季从室内吸收热量并转移释放到地源中,实现服务区建筑物制冷——地源热泵已在京港澳高速公路河北段全线服务区广泛应用。据悉,地源热泵系统可代替锅炉和空调,且不向外界排放任何废气、废水、废渣,可节省能源和运行费用40%至50%。京港澳高速公路河北段将336万条废旧轮胎加工成改性沥青胶结材料,应用橡胶改性沥青技术铺筑路面规模为全国第一。循环绝招:开槽土填筑路基据统计,京港澳高速公路河北段全线利用建筑垃圾、开槽土、废弃河砂和煤矸石156万立方米填筑路基,节约占地1564亩。在京港澳高速公路京石段,每个服务区都建有污水处理系统。生活污废水经统一收集处理后,达到绿化用水标准,用于服务区广场绿化和卫生间冲厕,既节约用水又减少了污水排放量。环保妙方:推广高性能混凝土京港澳高速公路河北段全线共使用高性能混凝土350万立方米,节约水泥30万吨,减少二氧化碳排放26万吨,同时延长了结构混凝土的使用年限。项目人员还编制了《高速公路高性能混凝土技术推广应用设计与施工规定》,实现了高性能混凝土的集中预制和标准化生产。此外,京港澳高速公路河北段大力推广应用植物纤维毯新型生态防护。植物纤维毯施工后,路基边坡即被植物纤维毯覆盖形成保护层,防雨、防风,并很快形成植被,使路基边坡很快得到充分保护。[pagebreak]大连港五年节能2.2万吨标准煤“十二五”期,大连港集团累计完成节能量2.2万吨标准煤,港口生产单位吞吐量综合能耗和单位吞吐量二氧化碳排放较2005年分别下降41.9%和58.8%,全面完成了公路水路交通运输节能减排“十二五”规划目标。大连港通过实行集装箱不落地中转,减少了周转能耗。“车船直取作业方式”、“水水中转”、“海铁联运”,实现了一次申报、一次查验、一次放行,形成了一套集约高效的新体系。在生产体系“变绿”的同时,大连港港内的高耗能电机、老式变压器等全面“下岗”,变频调速、势能回收等新技术、新设备陆续成为作业现场的主角。通过应用“电缆卷盘供电”、“直流滑触线供电”等新技术,门式起重机全面实现了“油改电”。在堆料区域,工作人员将抑尘剂喷洒在堆料表面,据介绍,这种抑尘剂能迅速在堆料表面凝结成一层坚硬的外壳,将粉尘牢牢罩住。在污水处理方面,大连港现有10座污水处理设施和8套地埋式污水装置,实现了港区污水处理的全覆盖。对于以前难以处理的油轮压舱水,大连港在国内率先采用了生物技术进行深度处理,使油含量指标在国内港口处于领先水平。大连港集团已完成了集团生产指挥智能化调度系统、集装箱码头生产管理系统统一平台、物流一体化服务平台建设等,港口的智能化水平迅速提升。去年,大连港一期集装箱码头引入了具有自主知识产权的“TOP+”系统。该系统可自动采集数据、生成作业指令,智能调配人、车、机械等作业资源,实时监控所有设备的作业轨迹。青岛港“三低三高”绿色发展青岛港围绕“低能耗、低污染、低排放”和“高效能、高效率、高效益”,全力打造绿色低碳港口。集装箱轮胎吊“油改电”、拖轮“学良节油法”、“门机自动计量系统”、“集装箱码头装卸工艺优化系统”4个项目被评为全国交通运输行业节能减排示范项目。青岛港打造专业化低碳生产工艺,针对煤矿散货生产智能化堆场系统、混矿流程工艺等7个流程系统总结提炼节能效果,推广节能作业模式。引导广大员工不断优化操作工艺,总结提炼机械节能操作法和岗位绝活329项,极大降低了单车能耗。通过调整港口功能布局,青岛港实现二、三期码头堆场道路对接,降低能耗成本。青岛港加大节能技术应用,组织实施了集装箱轮胎吊混合动力技术改造、轨道吊自动化技术改造等27项绿色低碳港口主题性项目。青岛港建设了能源采购、消耗、监测、分析等能源管理体系模块,建立了数据分析库,为管理节能提供依据。通过引进新设备,青岛港港内耗能设备、设施的节能达标率达到98.5%以上,新建项目、新购设备的节能达标率达到了100%。青岛港在矿石码头修建废水回收沉淀池,每年节约水资源约5万吨。对港内两座加油站实施油气回收改造,油气回收率达到95%。在液化罐区实施油罐加温蒸汽余热再利用,每年节约蒸汽费13万元。青岛港还建设了20多公里挡风抑尘墙、散货市提车辆洗车池,以及码头配套污水处理设施、溢油应急设施等。在四大港区严格实施货垛全部苫盖、堆场全部喷淋、搬捣市提车辆全部冲洗车轮。重庆绿色交通城市绿色交通体系“五位一体”重庆市围绕建设绿色循环低碳交通基础设施、推广绿色循环低碳型交通运输装备、优化运输模式及操作方法、提升信息化技术水平、健全交通碳排放管理体系,建成了“五位一体”的绿色循环低碳交通运输体系。在低碳交通基础设施领域,重庆市实施完成普通国省道沥青路面冷再生利用132公里、水泥破碎再生路面336公里,干线公路路面循环利用率达到80%;建成长江上最大豪华游轮靠港岸电设施。[pagebreak]在低碳交通运输装备领域,主城区清洁能源公交车辆占比达到99.3%,清洁能源出租车占比100%,CNG(压缩天然气)公交车、CNG出租车已全面覆盖38个区县;内河船型标准化率达到75%。在交通运输组织优化领域,完成公路客运联网售票系统建设,在全国省域范围内率先实现所有区县和一二级客运站联网售票;完成305台模拟驾驶器的推广使用;长江水陆甩挂、陆路甩挂运输示范全面完成,鱼复工业园城北物流甩挂运输示范、载货汽车滚装船运输示范项目基本完成。在智能交通工程领域,智能公交工程、内河航运船舶智能调度系统等8个项目已全面完成预期功能及规模,在公交、出租、物流等领域基本实现了智能化运营管理。在交通运输碳排放管理体系领域,营运车辆能耗动态监测系统和4家内河航运企业能源管理体系建设2个项目已完成全部拟定内容,同时带动1家公交企业开展企业能源管理体系建设。据统计,重庆市试点项目年节能量4.02万吨标准煤,替代燃料量7.54万吨标准油,年减少二氧化碳排放13.34万吨。厦门绿色交通城市两年推广新能源汽车2311辆据统计,“十二五”期间,厦门市单位GDP能耗降低率实际完成16.5%,完成预期目标的171%。146万元补助合同能源管理厦门市大力发展节能环保产业,推动产业园区循环化改造。2015年,厦门市六大高耗能行业能耗比上年下降6.4%,高新技术产业产值占全市工业总产值的65.9%,比2014年增长11.6%。厦门市正在实施节能技术产业化工程。2015年,厦门市共立项支持节能科技项目29项,编制了第九批《厦门市节能技术和产品推荐目录》。此外,厦门市积极推进实施合同能源管理。2015年,共有10个合同能源管理项目享受厦门市财政补助146万元。实施37项重点节能工程厦门市设立专项资金支持重点节能工程,组织实施了37项重点节能工程,累计发放资金补贴1263万元。厦门市对道路运输车辆燃料消耗量达标车型车辆参数及配置进行核查,严格把好车辆准入关;积极推广新能源汽车,2014年至2015年累计推广新能源汽车2311辆,任务完成率为福建省第一;建立出租车电召服务平台,全市5962辆出租汽车均安装了电召终端设备。重点用能单位节能监测在完善节能法规的同时,厦门市实施重点用能单位和重点耗能设备节能监测、单位产品能耗限额等节能执法活动。2013年至2015年,厦门市累计淘汰低效电机2908千瓦,累计节能改造电机系统6.271万千瓦。厦门市还加强能源计量和统计工作以及节能统计能力建设,严格执行国家、省能源统计及核算制度,及时、准确上报各项能源统计数据,开展能源统计调研和分析。环境保护山西交通运输环境监测网络建设试点工程覆盖全省高速公路网重要路段该项目2011年批复建设,目前初步建立了覆盖山西省高速公路网重要路段的环境监测网络。山西省交通运输环境监测网络以山西省交通环保站环境监测中心为核心,以交通环境监测分站和在线环境监测站点为骨架,以环境监测信息处理平台为支撑。试点工程建设主要包括四部分内容,一是山西省交通环保站环境监测中心升级改造工程,对现有的水质分析实验室、大气分析实验室、噪声和振动监测实验室进行升级完善,新建生态环境监测实验室、生物分析实验室,购置液相色谱、气质联用仪等环境监测仪器设备21台(套)。二是交通环境监测信息处理平台,包括交通环境数据中心系统、交通环境地理信息系统、交通环境质量(空气、噪声)在线智能化监控系统、交通实验室检测业务管理系统。三是结合山西省地理区域和高速公路发展现状,在山西省北部的大同片区和南部的运城片区,分别设立大同交通环境监测分站和运城交通环境监测分站,总实验面积约180平方米,购置了环境监测仪器设备40台(套)。四是在全省范围内,建设4套环境空气在线监测系统和8套噪声在线监测系统。该项目的实施,大幅提升了山西省交通环保站环境监测中心的监测能力,进一步改善和强化了实验环境、监测仪器、监测项目、监测范围等软硬件实力,可基本满足山西省交通运输类项目在前期立项、施工过程、竣工验收和运营维护等不同阶段的环境监测需求,为山西省交通行业环保规划、环保监管、环保统计和科研提供基础数据和技术支撑,为华北地区公路交通运输环境监测工作积累经验。[pagebreak]湖北交通运输环境监测网络建设试点工程环境监测网络初具规模辐射全省该项目2011年批复建设,现已初步建成以湖北省交通运输厅环办为主管部门,以湖北省交通环境监测中心站为技术主体,以中心实验室、十堰环境监测分站、交通环境监测信息处理平台、在线监测站点为组成要素的环境监测网络架构,实现对湖北省公路水路交通运输领域的基本覆盖。该项目建设内容包括四个部分。一是升级改造交通环境监测中心站原有实验室,设置水质分析室、大气分析室、噪声和振动监测室、生态环境监测室,增加实验室面积,购置半自动红外测油仪、原子吸收分光光度计等环境监测仪器设备30余台(套),新增移动环境监测车一台(配套常规监测设备)。二是新建十堰交通环境监测分站,配备水、气、声等常规监测仪器和实验试剂、器皿、实验室配套设施等。三是新建交通环境监测信息处理平台,建设交通环境监测管理数据库、基础地理数据库和环境监测业务数据库,开发基于GIS的环境监测数据统计模块、环境监测数据对比模块等。四是在全省范围内,试点建设水质在线监测系统、环境空气在线监测系统和噪声在线监测系统各2套。该项目的实施,推动建立了初具规模且可辐射全省高速公路的省级交通运输环境监测网络,促进完善了湖北省交通运输厅环保管理工作,扩大了省内交通运输行业环保培训范围,形成了一批行业环境监测领域的学术成果和环保研究,提升了省内交通运输环境监测能力,取得了良好的社会效益和环境效益,为省内建设绿色交通奠定了技术支撑,为长江中游地区交通运输环境监测工作和行业环境监测网建设积累了有益经验。湖北黄黄高速公路二里湖服务区试点工程建筑围护结构改造节能65%该项目主要包括污水生态式处理及中水回用工程,新建污水处理设施,处理工艺采用水解酸化+接触氧化为主体的前置二级预处理+强化潜流人工湿地工艺,中水作为冲厕、冲洗车辆以及服务区绿化浇灌用水使用;太阳能光伏发电工程,利用综合楼屋顶设置太阳能电池板,光伏系统总功率为71.39千瓦;风光互补路灯照明工程和LED照明工程;地表水源热泵系统工程,利用二里湖湖水作为冷热源的供暖供冷系统,为服务区附属建筑供热、制冷及提供生活热水;建筑围护结构节能改造工程,对服务区原有综合楼进行围护结构节能改造,改善围护结构热工性能,降低建筑能耗。该工程实施后环境效益显著:实现建筑节能65%,节省资金40万元;地源热泵系统采用地源热泵,比多联空调系统每年节省33883度电;太阳能光伏发电工程,每年二氧化碳减排量14.08吨、二氧化硫减排量约0.114吨、粉尘减排量约0.057吨;风光互补路灯照明,减少排放二氧化碳264吨、二氧化硫855.05千克、氮氧化物744.4千克;LED灯节能照明年均约节省80.4万度电:污水处理系统每年减少66.28吨COD、37.45吨BOD5和7.21吨NH3-N的排放。该试点工程贯彻落实了国家“生态文明建设”发展战略和交通运输部“绿色、循环、低碳”发展要求,对建设“生态、环保、绿色、和谐”的高速公路服务区具有较好的示范作用,取得了较好的节能效益、环境效益、经济效益和社会效益,项目探索总结的服务区建筑围护结构节能改造、污水生态式处理等技术,可为长江中下游平原地区高速公路服务区提供借鉴和示范。陕西西宝高速公路武功和眉县服务区试点工程污水再生利用呵护景观美化环境该试点工程主要内容包括污水生态式处理和循环利用技术、太阳能热水器制备热水、建立固体废弃物中转站等内容。污水处理及回用工程采用生态法污水处理工艺,处理后出水水质指标符合《城市污水再生利用——城市杂用水水质》标准,能够满足服务区回用要求。该工程运行成本低,水处理成本仅为0.24元/吨,其他污水工程水处理成本约为0.6元—1元/吨;维护管理简单、系统运行稳定,由于生态法污水处理技术使用的机械设备较少,其维护管理简单易行,即使不具备污水处理专业知识的高速公路服务区普通职工,通过简单培训也可实施日常运营维护管理;出水水质好,由具备检测资质的第三方进行水质检测,结果证明该工艺处理出水水质明显优于《城市污水再生利用——城市杂用水水质》标准;四是景观效果好,生态床顶部种植有开花类挺水水生植物,可以将整个污水处理系统融入服务区景观体系,并对美化环境起到了积极作用。该工程采用生态式污水处理回用系统为主体污水回用处理系统,既可以改善周围环境及周围河流的水质,也节省水资源,实现节能减排。工艺实施后污染消减,每年可节约资金96.71万元。[pagebreak]该试点项目贯彻落实了国家“生态文明建设”和陕西省建设国家低碳试点省份的发展战略,是交通运输行业引领创新、发展转型的具体体现。全面完成了交通运输部批复的工程建设内容,节约了大量运营成本,社会、环境、经济效益显著,符合行业建设绿色、循环、低碳交通运输体系的总体要求。该项目成果达到了服务区清洁能源和水资源循环利用试点目的,探索总结的新技术和新工艺可为其他类似项目建设提供借鉴和示范作用。青海西久公路龙穆尔沟至黑土山生态建设和修复试点工程植草长势旺盛
成活率85%以上西(宁)久(治)公路(S101)贵德至大武段穿越三江源国家生态保护综合试验区。2011年,交通运输部将该条公路穆尔沟至黑土山段列为“十二五”重点生态修复示范工程之一,对沿线植被恢复进行重点治理。工程实施后整体效果突出,植草大部分长势旺盛,成活率在85%以上,土工格室植生袋修复技术、植被毯技术、厚层基材喷射技术、撒植草技术、液压喷播植草技术、挂三维网液压喷播植草技术在下边坡较为成功。土质上边坡工点植物长势良好,但砂砾含量大的上边坡冲刷较严重,成活率仅达到40%。在草种选择方面,建议采用青海牧科院培育的适应当地高寒耐温气候的草籽,并配有早期生长旺盛的先锋草籽混合播种,起到水土保持的作用。在修复技术方面,每一种修复技术都有其特定的应用环境,因此设计施工时需因地制宜。如液压喷播植草技术虽然应用范围广泛,但在砂石边坡上,因雨水冲刷严重,不易存活;植生袋技术要求边坡坡度不大于60度,边坡平整,重点应先将植生袋放平整固定;厚层基材喷射技术则要求修整边坡坡度不大于45度,边坡表面应无杂石,还要特别加大种子与底肥的科学配比,厚度一定要均匀,喷播后加强保温管理,温度最好不低于17摄氏度,做好后期养护。该试点工程贯彻落实了国家“生态文明建设”和青海省“生态立省”发展战略,对三江源地区生态环境保护也起到一定作用。该工程沿线气候恶劣、自然地质条件复杂,试点成果体现了青藏高原的地域特色。该项目达到了高寒高海拔地区公路生态修复试点目的,项目探索总结的工艺和技术可为其他高寒高海拔地区公路生态修复工作提供借鉴和示范。内蒙古银巴公路巴彦浩特至头关段生态建设和修复试点工程乔灌草科学布局
立体化修复生态该试点项目旨在有效减缓沙漠东移对公路的影响,改善路域生态环境,保证公路正常运营,同时也为内蒙古及其他类似地区既有公路生态修复工作提供指导和示范。该试点工程修复范围为线路西侧巴润别立井灌区和格林布隆滩井灌区之间的荒漠和沙丘区域。主要工程内容包括植被恢复工程和辅助设施工程。其中,植被恢复工程包括人工种植乔木1.1万株、灌木人工造林2.5万亩、恢复抚育天然植被3.8万亩;辅助设施工程包括修建机电井8眼、修筑作业道路12.8公里、铺设输水管道14.9千米、架设网围栏52.8千米、扎设固沙草方格沙障800亩。试点工程应用了草方格工程固沙、乔木人工造林、灌木人工造林、灌木容器育苗、人工撒播草种和飞播草种植草等生态修复技术。通过试点工程发现,沙枣适应性最强,榆树次之,刺槐不适于沙地造林;在灌木人工造林上,梭梭生长慢但生命周期长,沙拐枣生长快但生命周期短,花棒居中,两行一带灌木混交造林是值得推广的技术;在草种撒播上,人工撒播的成本和效果不如飞机撒播,草种撒播适用于半固定沙丘及沙地,不适用于荒漠戈壁;天然植被区恢复抚育的人工补水措施成本高且成效低,不宜大规模开展;在灌溉方式上,乔木宜采用滴灌,灌木适合管灌,工程固沙草方格及天然植被恢复抚育区域适合采用喷灌。该试点工程对公路沿线区域的风沙防护和生态环境改善起到一定作用。工程沿线气候恶劣、土壤水分条件较差,试点成果体现了干旱荒漠地区的地域特色,达到了干旱荒漠地区公路生态修复试点目的,探索总结的技术可为其他干旱荒漠或沙漠地区公路生态修复工作提供借鉴和示范。

国际节能环保网讯:日前,国际节能环保网从环保部获悉,关于发布《民用煤燃烧污染综合治理技术指南(试行)》与《民用煤大气污染物排放清单编制技术指南(试行)》的公告已经印发。详情如下:关于发布《民用煤燃烧污染综合治理技术指南(试行)》与《民用煤大气污染物排放清单编制技术指南(试行)》的公告为贯彻《大气污染防治行动计划》,加强大气污染防治科技支撑,促进科研成果的推广应用,指导各地科学合理开展民用煤燃烧污染综合治理工作,加快环境空气质量改善进程,我部编制了《民用煤燃烧污染综合治理技术指南(试行)》和《民用煤大气污染物排放清单编制技术指南(试行)》,现予以发布。请各地结合实际情况,参照执行。其中,《民用煤大气污染物排放清单编制技术指南(试行)》是大气污染源排放清单技术指南体系的重要组成部分,是对该体系的进一步补充和完善。已发布的《大气细颗粒物一次源排放清单技术指南(试行)》《大气可吸入颗粒物一次源排放清单技术指南(试行)》《大气挥发性有机物源排放清单技术指南(试行)》中关于民用煤污染物源排放清单编制部分请参照本次发布的《民用煤大气污染物排放清单编制技术指南(试行)》执行,其附录所提供的排放系数推荐值供参考使用,鼓励各地优先使用本地实测与调查数据。环境保护部2016年10月22日主送:各有关单位。民用煤燃烧污染综合治理技术指南(试行)第一章总则1.1编制目的为贯彻落实《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》和《大气污染防治行动计划》,更有效解决冬季灰霾频发、空气污染严重的问题,保护人民群众身体健康,制定《民用煤燃烧污染综合治理技术指南(试行)》(以下简称指南)。1.2适用范围本指南适用于我国农村、城乡结合部、城中村以及城镇居民的民用煤燃烧污染综合治理,也可供设施农业和小型工商业燃煤污染治理时参考。1.3规范性引用文件发展改革委、环境保护部、商务部、海关总署、工商总局、质监总局令第16号《商品煤质量管理暂行办法》GB/T31356-2014《商品煤质量评价与控制技术指南》GB16154《民用水暖煤炉通用技术条件》GB/T16155《民用水暖煤炉性能试验方法》GB13271-2014《锅炉大气污染物排放标准》GB/T50824-2013《农村居住建筑节能设计标准》GB50176-93《民用建筑热工设计规范》JGJ/T267-2012《被动式太阳能建筑技术规范》GB25127.2-2010《低环境温度空气源热泵(冷水)机组第2部分:户用及类似用途的热泵(冷水)机组》GB25034-2010《燃气采暖热水炉》NY/T1703《民用水暖炉采暖系统安装及验收规范》GB/T25209-2010《商品煤标识》DB11/097-2014北京市地方标准《低硫煤及制品》DB12/106-2013天津市地方标准《工业和民用煤质量》DB13/2081-2014河北省地方标准《工业和民用燃料煤》DB13/2122-2014河北省地方标准《洁净颗粒型煤》1.4术语和定义下列术语和定义适用于本指南。商品煤:原煤经过加工处理后用于销售的煤炭产品。可分为动力用煤、冶金用煤、化工用原料煤等。动力用煤:通过煤的燃烧来利用其热值的煤炭产品统称动力用煤。动力用煤按用途可分为发电用煤、工业锅炉及窑炉用煤和其他用于燃烧的煤炭产品等。民用煤:用于居民炊事、取暖等分散式使用的动力用煤,可分为民用原煤和民用型煤两类。民用原煤:未经成型加工的民用煤。民用型煤:以适当的工艺和设备加工成型的民用煤,包括蜂窝煤和其他型煤。无烟煤:煤化程度高的原煤。其特点是挥发分低、密度大、燃点高、碳含量高、无粘结性,燃烧时多不冒烟。通常作为民用燃料,也可直接用于小型高炉炼铁等。无烟煤的干燥无灰基挥发分质量分数一般在10%以下。烟煤:煤化程度低于无烟煤而高于褐煤的原煤。其特点是挥发分产率范围宽,干燥无灰基挥发分质量分数一般在10%-40%之间,其中若干燥无灰基挥发分质量分数在37%-40%之间时,透光率大于50%者为烟煤。烟煤主要分为炼焦烟煤和一般烟煤。兰炭:无黏结性或弱黏结性的高挥发分烟煤在中低温条件下干馏热解,得到的较低挥发分的固体炭质产品。民用焦炭:以高挥发动力煤为主要原料,辅以少量炼焦煤及助燃、固硫等功能助剂,经高温干馏热解过程,得到的既具较低挥发分,又有良好可燃性的固体炭质产品。民用水暖煤炉:在常压状态下,以水为传热介质,额定供热量小于50千瓦,循环系统高度不超过10米,出口水温不高于85℃,具有采暖供热能力的民用燃煤采暖煤炉(兼炊事功能)。烤火炉:靠炉体散热取暖,兼有炊事功能的炉具。节能环保型燃煤炉具:热性能和大气污染物排放指标符合民用炉具相关标准的燃煤炉具。正烧:固体燃料燃烧时火焰顺热烟气自然流动方向传播的燃烧方式,具有挥发分析出速度快的特点,适用于无烟煤等挥发分低的燃料。反烧:固体燃料燃烧时火焰逆热烟气自然流动方向传播的燃烧方式,具有能延缓挥发分析出速度的特点,适用于烟煤等挥发分高的燃料。电采暖:将电能转化成热能来满足供暖需求的采暖方式或设备。低温空气源(热风/热水)热泵:由电驱动机驱动的蒸汽压缩制冷循环,以空气源为热(冷)源的热泵(热风/热水)机组,并能在不低于-20°C的环境温度正常工作。制热性能系数:在规定的试验条件下,热风机进行制热运行时,制热量与消耗的总输入功率之比。制热季节性能系数:在制热季节中,热风机制热运行时向室内送入的热量总和与消耗的电量总和之比。燃气采暖热水炉:以燃气作为燃料,燃料经燃烧器输出,在燃烧室内燃烧后,由热交换器将热量吸收,采暖系统中的循环水在途经热交换器时,经过往复加热,从而不断将热量输出给建筑物,为建筑物提供热源。1.5编制原则科学性原则:指南中所提出的各项民用煤污染治理技术,需要通过大量调研、筛选和优化,保证各项技术的科学性。实用性原则:指南中提出的措施和对策应该在充分分析民用煤现状、能源结构和经济承受能力的基础上,突出强调各项技术的实用性。差异性原则:指南编制应充分考虑我国不同区域的自然地形、生活生产特征、能源可获得性和经济基础等各方面的差异,提出体现地区差异性的多种技术方法。前瞻性原则:指南以当前我国能源结构和经济发展现状为立足点,着眼未来,把握技术发展趋势和发展高度,强调指南的前瞻性和指导性。1.6组织编制单位本指南由环境保护部科技标准司组织,中国环境科学研究院、北京市环境保护科学研究院、煤炭科学技术研究院有限公司、中国农村能源行业协会节能炉具专业委员会、北京市可持续发展促进会、北京化工大学共同起草编制。第二章民用煤污染治理的总体思路民用煤污染治理应以改善环境空气质量为核心,采取因地制宜、综合治理、多措并举、分步推进的步骤实施。清洁能源替代、减少能源消耗量、提高能源利用效率是民用煤污染治理的主要方向。具体措施包括煤改电、煤改气等清洁能源替代,优质煤替换,使用节能环保炉具,推进集中供热,推广建筑节能等。清洁能源替代、推广建筑节能与集中供热是解决民用煤燃烧污染的根本措施。当前经济社会环境下,暂不具备清洁能源替代条件的地区可采取优质煤替换、配套使用节能环保炉具等过渡性措施。各地可根据社会经济发展水平、大气污染状况以及能源禀赋等,采取因地制宜、分区施策的技术路线。在经济发达、大气污染严重地区优先发展电、天然气、太阳能等清洁能源替代;暂不具备清洁能源替代条件的地区可以先采用优质煤替换及节能环保炉具推广,逐步过渡到清洁能源替代;煤炭资源丰富的地区,可以发展煤炭清洁高效利用技术。第三章民用煤污染排放现状调查各地应开展民用煤大气污染排放现状详细调查,掌握能源使用状况。调查方法包括统计调查法、逐村填报法、抽样调查法、卫星遥感与现场调查综合法等。现状调查应重点收集和整理大气污染状况、当地能源禀赋、经济发展状况、居民生活习惯与建筑结构、居民能源消费结构,以及前期开展的民用煤治理相关资料。有条件的地区应当加强民用煤排放实测,获取当地的民用煤大气污染物排放系数,编制民用煤大气污染物排放清单,计算大气污染物的排放量。民用煤大气污染物排放清单编制方法具体参考《民用煤大气污染物排放清单编制技术指南(试行)》。各地应在清单编制的基础上,分析评估不同治理技术方案的可行性与经济性,提出适宜本地的民用煤污染治理行动方案。第四章综合治理技术4.1清洁能源替代清洁能源替代主要包括电能、天然气、太阳能、地热、沼气等。各地应充分考虑当地地理环境和气候条件、能源禀赋特征、济发展水平、基础设施(如电网、燃气管网等)、生活习惯等基本情况,并结合替代技术的先进性与可靠性、一次性投资、运行成本以及维修维护等因素,因地制宜的选择合适的清洁能源替代技术。替代技术有电采暖、燃气采暖、太阳能采暖、沼气采暖、生物质成型燃料采暖以及组合采暖方式(如太阳能+电、太阳能+燃气、太阳能+沼气等)。(1)电采暖鼓励使用热泵技术,逐步减少使用直接电热式采暖技术。热泵术包括低温空气源热风热泵、低温空气源热水热泵、地源热泵和水源热泵。寒冷地区优先采用低温空气源热风热泵技术。要求额定制热量小于等于5千瓦的热风热泵在环境温度-20°C时,其制热性能系数不低于2.0、制热季节性能系数不低于3.0。经济条件较好的寒冷地区可结合节能新民居建设和既有居住建筑节能改造采用低温空气源热水热泵进行供暖。要求在环境温度高于-20°C时,系统可正常运行,性能系数符合《低环境温度空气源热泵(冷水)机组第2部分:户用及类似用途的热泵(冷水)机组》(GB25127.2)规定。在地质、水文以及经济条件均许可的条件下,可以在农村新建集中居民区中采用地源热泵和水源热泵技术,用电能驱动热泵采集浅层地能和水能作为建筑供暖用能。在推行电采暖替代时,应先加强配套电网改造,保证每户电力供应增量不少于8千瓦。鼓励和引导利用低谷电量进行电采暖,发挥电力调峰的作用。(2)燃气在燃气供应配套设施较为完备、燃气供应量充足的地区,可采用燃气(主要是天然气)壁挂炉供暖,要求炉具热效率不低于85%。(3)太阳能鼓励使用太阳能。太阳能资源丰富或较丰富且经济条件允许的地区宜采用太阳能热水供暖技术和主被动结合的供暖技术。经济欠发达地区应优先采用建筑本体节能技术和被动式太阳能利用技术。(4)生物质能用于替代民用煤的生物质能包括沼气、生物质成型燃料等。减少户用生物质直接燃烧,鼓励采用生物质转换技术将生物质转化为低排放的固体、气体燃料后加以使用。大型养殖场及周边地区可利用畜禽粪便和生物质建设规模化沼气集中供气采暖系统。生物质资源丰富和生物质成型燃料技术成熟的地区,可利用生物质成型燃料进行集中供暖。4.2优质煤替换(1)民用煤质量基本要求优先使用挥发分、硫分、灰分以及有害元素含量较低的民用煤,可选用优质的无烟煤、烟煤、型煤和其他煤制品(如兰炭、民用焦炭等),禁止褐煤、洗中煤、煤泥等低质、劣质煤及其制品进入民用煤市场。煤炭资源丰富、经济条件较好且污染严重的地区应优先选用低硫、低挥发分的优质无烟煤、型煤、兰炭和民用焦炭;暂时不能供应优质无烟煤、型煤、兰炭和民用焦炭的地区,也应选用低硫的优质烟煤作为民用煤。民用煤的质量指标应符合相应国家或地方标准的要求。生产和销售的民用煤应按照《商品煤标识》(GB/T25209-2010)进行标识。(2)民用煤洁净加工技术积极推进民用煤洁净加工,提高洁净型煤在民用煤中的使用比例,各地区应建设规范化、清洁化的民用洁净型煤生产配送体系,加强配煤成型、型煤固硫、引火型煤等配套技术的研发。暂不具备清洁能源替代条件的地区应尽快使用优质无烟煤、洁净型煤、兰炭和民用焦炭替换劣质民用散煤。4.3节能环保型燃煤炉具各地应大力推广和使用符合国家或地方标准的节能环保型燃煤炉具。禁止销售低效劣质炉具,规范炉具的安装和使用,鼓励采暖和炊事功能分开。炉具燃烧方式主要分为正烧和反烧两种。以正烧方式为主的炉具,应燃用无烟煤、无烟煤型煤、兰炭和民用焦炭等挥发分低的燃料,不应燃用烟煤。无烟煤、无烟煤型煤挥发分最佳范围为6%-10%,热值高于21MJ/kg。正烧炉适用于炊事、水暖、烤火等,其中炊事炉的热效率大于30%,炊事火力强度大于2千瓦,水暖炉的热效率大于65%,炊事水暖炉的采暖热效率大于65%,采暖火力强度大于1.5千瓦。以反烧方式为主的炉具,应燃用烟煤、烟煤型煤等挥发分较高的燃料。烟煤、烟煤型煤挥发分最佳范围为15%-30%,热值高于21MJ/kg。反烧炉适用于水暖,热效率大于70%。4.4集中供热鼓励在城乡结合部、城中村和居住较为集中的村镇发展集中供热。鼓励实施热电联产和工业余热利用,鼓励对现有热电联产机组实施技术改造,扩大供热范围,鼓励开发利用地热、太阳能、生物质能、天然气等清洁能源。集中供热锅炉必须符合国家和地方对锅炉准入的相关规定,燃煤锅炉必须安装脱硫、除尘等污染治理设施,低氮燃烧无法满足排放要求的还应安装脱硝设施,20蒸吨及以上锅炉配套大气污染物自动在线监测设施,并与当地环保部门联网,大气污染物排放满足国家和地方排放标准、总量控制及排污许可要求。4.5建筑节能大力推动农村建筑节能改造及节能新民居建设。农村地区居住建筑应根据当地村庄和住房改造规划、地理位置、自然资源条件、传统做法以及农民的生产和生活习惯,因地制宜地采用技术经济合理的节能技术。农村居住建筑节能设计应与地区气候相适应,农村区建筑节能气候分区应符合《民用建筑热工设计规范》(GB50176-93)规定。严寒和寒冷地区农村居住建筑宜采用保温性能好的围护结构形式,热工性能应达到现行国家标准《农村居住建筑节能设计标准》(GB/T50824)规定的限值要求,并且节能投资成本增量不宜超过20%。鼓励农村采用被动式太阳能采暖,被动式技术集成设计应符合现行行业标准《被动式太阳能建筑技术规范》(JGJ/T267)的有关规定。第五章民用煤污染监管技术加快完善相关标准。各地应结合本地环境质量改善要求完善或制订民用煤质量标准、民用炉具产品标准,增加环境保护相关指标和要求;制订民用煤燃烧排放测试和监测方法标准。重点区域应加强协同联动,使用统一标准。鼓励开展新技术研究与应用。利用互联网、遥感等新技术,建立民用煤生产、经营、使用全过程质量监控体系,完善民用煤供求及煤质信息共享机制,建立网格化管理制度。民用煤大气污染物排放清单编制技术指南(试行)第一章总则1.1编制目的为贯彻落实《大气污染防治行动计划》,推进我国大气污染防治工作的进程,增强民用煤污染防治工作的科学性、针对性和有效性,根据《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《环境空气质量标准》及相关法律、法规、标准、文件,编制《民用煤大气污染物排放清单编制技术指南(试行)》(以下简称指南)。1.2适用范围1.2.1本指南明确了民用煤大气污染物排放清单编制的技术流程、技术方法、质量控制等内容。1.2.2本指南适用于指导民用煤大气污染物排放清单编制工作,其他类型民用源排放清单编制方法见环境保护部已发布的相关排放清单编制技术指南。1.2.3本指南涉及的大气污染物主要包括二氧化硫(SO2)、氮氧化物(NOx)、一氧化碳(CO)和挥发性有机物(VOCs)、可吸入颗粒物(PM10)、细颗粒物(PM2.5)。1.3编制依据《中华人民共和国环境保护法》《中华人民共和国大气污染防治法》《国务院办公厅转发环境保护部等部门关于推进大气污染联防联控工作改善区域空气质量的指导意见的通知》《大气污染防治行动计划》《重点区域大气污染防治“十二五”规划》《大气细颗粒物一次源排放清单编制技术指南(试行)》《大气可吸入颗粒物一次源排放清单编制技术指南(试行)》《大气挥发性有机物源排放清单编制技术指南(试行)》当上述标准和文件被修订时,使用其最新版本。1.4术语与定义下列术语和定义适用于本指南。民用煤:用于居民炊事、取暖等分散式使用的动力用煤,可分为民用原煤原煤和民用型煤两类。动力用煤:通过煤的燃烧来利用其热值的煤炭产品统称动力用煤。动力用煤按用途可分为发电用煤、工业锅炉及窑炉用煤和其他用于燃烧的煤炭产品等。民用原煤原煤:未经成型加工的民用煤。民用型煤:以适当的工艺和设备加工成型的民用煤,包括蜂窝煤和其他型煤。无烟煤:指煤化程度高的原煤。其特点是挥发分低、密度大、燃点高、碳含量高、无粘结性,燃烧时多不冒烟。通常作为民用燃料,也可直接用于小型高炉炼铁等。无烟煤的干燥无灰基挥发分质量分数一般在10%以下。烟煤:指煤化程度低于无烟煤而高于褐煤的原煤。其特点是挥发分产率范围宽,干燥无灰基挥发分质量分数一般在10%-40%之间,其中若干燥无灰基挥发分质量分数在37%-40%之间时,透光率大于50%者为烟煤。烟煤主要分为炼焦烟煤和一般烟煤。兰炭:无黏结性或弱黏结性的高挥发分烟煤在中低温条件下干馏热解,得到的较低挥发分的固体炭质产品。焦炭:以炼焦烟煤为原料,在隔绝空气条件下,加热到950℃左右,经高温干馏得到焦炭产品,同时获得煤气、煤焦油等。民用煤炉:额定供热量小于50kW,具有炊事和采暖供热能力的煤炉。挥发性有机物(VOCs):在标准状态下饱和蒸气压较高(标准状态下大于13.33Pa)、沸点较低、分子量小、常温状态下易挥发的有机化合物(甲烷除外)。可吸入颗粒物(PM10):指空气动力学当量直径小于等于10μm的颗粒物。细颗粒物(PM2.5):指空气动力学当量直径小于等于2.5μm的颗粒物。排放清单:指各种排放源在一定的时间跨度和空间区域内向大气中排放的大气污染物的量的集合。活动水平:指在一定时间范围内以及在界定地区里,与大气污染物排放相关的生产或消费活动的量。排放系数:指单位活动水平排放的大气污染物量。质量分级:指根据排放系数的获取方式,对排放系数数据的可靠性和准确性划分的等级。卫星影像:通过卫星进行远程拍摄的图片,包括中分辨率(空间分辨率5-30m)、高分辨率(空间分辨率1-5m)、甚高分辨率卫星影像(空间分辨率优于1m)。建筑基底面积折算系数:基于甚高分辨率卫星影像解译的平房面积与基于高分辨率卫星影像解译的平房面积的比值。采暖面积系数:采暖面积占总建筑面积的比例。1.5指导原则1.5.1科学实用原则:在确保排放清单编制工作的科学性与规范性的同时,增强为污染防治决策服务的针对性和可操作性。1.5.2因地制宜与循序渐进原则:各地根据自身污染特征、基本条件和污染防治目标,结合社会发展水平与技术可行性,科学选择所需数据的获取方法。随着环境信息资料的完备,不断完善和更新源排放清单。1.6组织编制单位本指南由环境保护部科技标准司组织,北京市环境保护科学研究院、中国环境科学研究院、北京市环境保护监测中心共同起草编制。第二章民用煤污染源分类根据民用煤的特点,第二级分类按燃料型式分为型煤、原煤和其他,第三级分类按燃料类型细分为蜂窝煤、其他型煤、无烟煤原煤、烟煤原煤、兰炭、焦炭等。应根据数据可得性优先采用第三级分类编制排放清单。第三章大气污染物排放清单编制的技术流程和方法3.1排放源分类分级体系的确定编制民用煤大气污染物排放清单时,应首先对清单编制区域内的排放源进行初步摸底调查,明确当地排放源的主要构成,选取合适的排放源分类级别,以确定源排放清单编制过程中的活动水平数据调查和收集对象。3.2排放清单计算空间尺度的确定民用煤大气污染物排放源一般按面源考虑。面源是指难以获取固定排放位置和活动水平的排放源的集合,在清单中一般体现为省、地级市、区县或乡镇的排放总量。在有条件的情况下,可以利用卫星观测的居民平房对民用煤大气污染物排放源的排放量进行空间定位。3.3大气污染物排放量的计算方法民用煤大气污染物排放量均采用排放系数法核算,采用公式1计算。式中:E为排放量(t);mA为排放源活动水平(t);EFi,m为排放系数(kg/t-煤);i为某一种大气污染物;m为煤的类型。3.4数据调查收集编制排放清单时,应当针对确定的民用煤大气污染物排放源分类级别制定活动水平调查方案,确定调查流程,明确数据获取途径。编制排放清单时,应当明确数据获取的基准年份,活动水平调查时尽可能收集与基准年份相对应的数据。基准年份数据缺失的,可采用相邻年份的数据,并根据社会经济发展状况决定是否进行适当调整。获得的活动水平数据应采取统一的数据处理方法和数据存储格式,保证数据收集和传递的质量。应安排专人对数据进行检查和校对,对可疑的异常数据进行核实。3.5活动水平数据的获取民用煤污染源的活动水平,即民用煤炉的煤炭消耗量。第一级活动水平数据的获取可采用统计调查法;更细致的第二、三级分类活动水平数据,在无法直接从当地能源统计数据或农村统计数据中获取时,可采用逐村调查法、抽样调查法或卫星遥感法获取不同时段(采暖季、非采暖季)各类型民用煤的活动水平数据。3.5.1统计调查法可从当地能源统计数据、统计年鉴的能源平衡表或环境统计数据中获取生活消费的煤炭消费总量,并结合地区统计口径和分类情况进行修正和补充。3.5.2逐村调查法组织调查区域内的各家各户填写统一的调查表(见附录A),填写各类型民用煤全年及采暖季用煤量,同步调查炉具类型等信息。对各家各户得到的信息进行逐级汇总,并开展数据质量控制和抽样审核。3.5.3抽样调查法抽样原则:以村/社区作为调查样本单元,以户为单位进行调查。以县/区为总体,结合县/区内村/社区居民的生活习惯、气候差异、收入水平、人口密度等要素进行样本抽取,抽取样本量不少于总体村/社区数量的1%且覆盖总家庭户数的1%以上。调查方法:采用现场调查的方式,即通过召集居民集中填报配合入户现场调查的方式开展问卷调查。问卷填写方式可采取调查员询问调查对象并填写,或由调查对象直接填写后再经调查员审核确认。3.5.4卫星遥感法利用遥感与GIS技术获取民用燃煤平房的空间分布及面积,结合现场抽样调查估算单位平房面积的燃煤量,从而测算某地区民用煤的活动水平数据。3.5.4.1高分辨率遥感影像平房面积解译方法(1)居住平房信息提取利用高分辨率遥感影像,对平房面积和分布进行遥感监测,获取平房斑块,并对结果进行外业验证、汇总与统计,监测频次为一年一次。为确保平房监测的图斑精度,要求对提取的图斑结果按5%的抽样率进行验证,满足1:10000比例尺下视觉无偏差的图斑数量达90%以上视为精度合格。(2)居住平房精细面积信息提取在RS、GIS、GPS技术的支持下,以甚高分辨率卫星影像识别和解译入户调查选取的样本村庄,入户调查的样本村庄不低于总体村庄数量的1%,以获取样本村庄的平房面积。3.5.4.2民用煤活动水平估算方法居住平房燃煤总量采用由点到面的方式进行估算。以遥感监测的居住平房空间分布数据为基础,在获取多个指标的基础上,分采暖季、非采暖季估算居住平房燃煤量。采用公式2计算:式中:A为居住平房燃煤量(t);S为各区县(地市)居住平房高分辨率遥感影像解译成果的平房面积(km2),i代表各区县或县市的序列号,i1,2,3;J为该区县(或县市)采暖面积折算系数。2S为实入户调查得到的采暖面积(m2);1S为甚高分辨率卫星影像遥感解译的该户居民的建筑基底面积(m2),n代表该区县入户调查的序列号,n1,2,3,j代表该区县或县市入户调查的总数;h为该区县(或县市)平房层高系数。为入户调查获取的房屋层数;dr代表单位采暖面积燃煤量系数(kg/m2)。T为该家庭的采暖季(非采暖季)燃煤总量(kg)。3.6活动水平数据质量控制活动水平数据质量控制包括正确性检验、一致性检验和完整性检验三个方面。正确性检验包括明确各民用煤大气污染物排放源活动水平数据来源,确保记录和归档的正确性;校对数据,对可疑异常数据进行核实;检查数据单位是否正确。一致性检验包括检验不同民用煤大气污染物排放源活动水平调查空间和时间范围是否相同;排放量计算参数是否具有内在一致性。完整性检验指检查活动水平调查范围是否涵盖所有民用煤大气污染物排放源类型,确保不重不漏。对于抽样调查法,应加强抽样审核。由上级调查机构对下级调查机构的数据进行逐级随机抽样审核,按抽样调查样本量的5%进行数据审核。审核应从各项数据的来源、填报的准确性和合理性、逻辑关系、数据的有效性、质量管理等方面详细审核,并提出书面审核意见。3.7排放系数获取途径及等级划分3.7.1排放系数获取途径民用煤大气污染物排放系数获取途径包括实验检测法(见附录B)和文献调研法。优先采用实验检测法获取排放系数。实验检测法是在民用煤炉大气污染物排放专用检测平台上,模拟民用煤燃烧使用过程,通过连续检测、统计计算获得大气污染物排放系数的方法。该方法能反映民用煤大气污染物排放源的实际排放情况,获取的排放系数准确度高。在具备检测条件的情况下,应通过实验检测法测定当地典型民用煤大气污染物排放系数。若某地区的某类民用煤品质差异较大,可用实验检测法对不同品质的煤分别测定其排放系数,再根据用煤量比例加权计算得到本地区此类民用煤的大气污染物排放系数。文献调研法是指通过从科技文献、排放系数数据库等资料中收集整理民用煤排放测试数据,获取不同类型民用煤大气污染物排放系数的方法。3.7.2排放系数等级划分在采用文献调研法获取排放系数时,根据其测量的技术方法、样本数量和质量等因素划分为A、B、C、D四个等级。分级目的在于方便使用者了解数据的可靠性和准确性,以便正确合理地选择使用。排放系数具体分级如下:(1)A级:实测数据,基于完善可靠的方法且具有足够的细节可供充分验证,测试样本数量大于等于10个。(2)B级:实测数据,基于完善可靠的方法,测试样本数量小于10个;或者测试样本量大于等于10个,但缺少相关的测试细节供验证。(3)C级:无实测数据,采用的是文献中相同燃料和炉具的排放系数。(4)D级:无实测数据,用燃料和炉具相似的排放系数推导得到。3.7.3推荐排放系数在不能通过实验检测法获得排放系数,且通过文献调研无法查到适用排放系数的情况下,可使用附录C中给出的民用煤主要大气污染物排放系数推荐值。3.8排放清单的数据格式根据上述居民燃煤分级分类,结合不同类型煤炭消耗量调查结果,不同煤炭类型大气污染物排放系数,核算并汇总得到县(区)、市级、省级及国家民用煤大气污染物排放清单,数据格式见附录D。可结合上述时间和空间尺度的确定,进行时空分配,得到高分辨率的民用煤大气污染物排放清单。第四章民用煤大气污染物排放清单的应用与评估4.1民用煤大气污染物排放清单的应用编制的民用煤大气污染物排放清单可用于大气污染物排放特征分析、大气污染机理与成因分析、大气污染物污染来源解析等方面的科学研究,也可用于民用煤大气污染控制方案的制定与评估、民用煤相关标准和规范的制订、环境监管和重污染应急方案制定等方面的环境管理。4.2民用煤大气污染物排放清单的评估与验证由于在数据收集过程中存在不可避免的监测误差、随机误差、关键数据缺乏以及数据代表性不足等因素而具有不确定性,民用煤大气污染物排放清单的准确性可通过不确定性分析方法进行评估。对不确定性的参数,即排放系数和活动水平,根据不同源分类等级和数据来源,运用统计分析、构建概率分布函数等方法定量化其质量等级及不确定性范围。可选用的方法是蒙特卡洛方法,评估内容是排放总量的置信区间。不确定性分析可用于重要污染源信息的甄别,评估排放清单的准确性。利用多种技术手段,如遥感反演、空气质量模型等方法对民用煤大气污染物排放清单的准确性进行验证,开展不同空间尺度下该排放清单不确定性对比分析,根据验证分析结果,研究空气质量浓度与该排放清单的响应关系。可利用空气质量模型模拟并与同时段空气质量观测结果比较,对该排放清单进行间接验证。根据不确定性定量评估结果,对引起该排放清单不确定性的主要因素,重要不确定性源进行质量保证和质量控制方法研究,降低其不确定性,从而提高清单的可靠性和准确性。附录B民用煤大气污染物排放系数实验检测法B.1范围本附录规定了民用煤大气污染物排放检测平台、检测方法以及排放系数计算方法。B.2规范性引用文件下列文件中的条款通过本附录的引用而成为本附录的条款。凡是不注日期的引用文件,其最新版本适用于本附录。GB/T16157固定污染源排气中颗粒物测定与气态污染物采样方法HJ/T76固定污染源烟气排放连续监测系统技术要求及检测方法(试行)GB3095环境空气质量标准B.3术语和定义下列术语和定义适用于本附录。B.3.1民用煤炉额定供热量小于50kW,具有炊事和采暖供热能力的煤炉。B.3.2检测平台基于稀释采样原理、为民用煤大气污染物排放系数检测专门设计的平台,主要由集气罩、管道、阀门、风机、排气筒等部分构成,在该检测平台上可实时测定烟气流速、温度、压力等参数,并进行各类污染物连续监测或采样。检测平台见示意图B.1。B.4检测平台设计要求B.4.1集气罩和管道采用不锈钢材质,管道内壁光滑,法兰连接顺畅且密闭。B.4.2管道直径在200~300mm范围。B.4.3管道内烟气流速在5~20m/s范围。B.4.4管道设计应能满足按《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157)要求进行颗粒物和气态污染物采样,预留采样孔。B.4.5集气罩安装高度及集气罩内口与民用煤炉烟囱出口的距离,以既不影响炉具内燃料正常燃烧又能保证炉具各部位产生的烟气全部被吸入管道为宜。可根据烟气吸入效果,在集气罩下方适当加装围挡。B.4.6为减少实验检测造成的环境污染,在废气排放前宜进行废气净化处理。B.5检测过程B.5.1实验前将炉底清理干净,加入一定量燃料,用液化石油气或丙烷引燃,引燃时间通常为20min(无烟煤原煤等低挥发分燃料30min),点火完毕记录引燃物消耗量。B.5.2模拟民用煤实际使用过程:依照当地民用煤使用习惯,模拟加煤、旺火、封火等过程,循环2-3个使用周期(1个使用周期24h)后让火自然熄灭。B.5.3扣除点火和灭火后的检测时间长度应至少涵盖2个使用周期(48h)。B.5.4对从点火到灭火整个模拟使用过程排放的大气污染物进行连续采样或连续监测,连续监测的数据记录时间间隔不大于1min。B.5.5每次的加煤量,用最小感量为0.01kg的电子秤准确称重并记录。B.5.6实验过程中应同时进行烟气温度、压力、流速的测量并记录,数据记录时间间隔不大于1min。B.5.7实验检测过程中应同时检测稀释空气的环境背景浓度值。B.6监测方法B.6.1颗粒物按《固定污染源排气中颗粒物测定与气态污染物采样方法》(GB/T16157)的要求进行连续采样,或按《固定污染源烟气排放连续监测系统技术要求及检测方法(试行)》(HJ/T76)、《环境空气质量标准》(GB3095)中的自动分析方法要求进行连续监测。B.6.2气态污染物按《环境空气质量标准》(GB3095)中的自动分析方法要求进行连续监测。B.7计算方法B.7.1实验结束,根据测得的滤筒/滤膜重量增加值、污染物浓度连续监测值、管道直径、烟气流速等参数,计算从点火到灭火全过程各类大气污染物排放总量。B.7.2从B.7.1得到的各类大气污染物排放总量中扣除稀释空气中所含污染量以及引燃物燃烧产生的大气污染物量,得到纯燃煤各类大气污染物排放量。B.7.3针对同一种炉具和燃料,应至少检测两次,取平均值。B.7.3按下式进行排放系数计算:排放系数=纯燃煤各类大气污染物排放量/总加煤量

相关文章

标签:, , , , , , , , , ,

Your Comments

近期评论

    功能


    网站地图xml地图